Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bias Analysis of Spatial Coherence-Based RTF Vector Estimation for Acoustic Sensor Networks in a Diffuse Sound Field (2205.09401v2)

Published 19 May 2022 in eess.AS, cs.SD, and eess.SP

Abstract: In many multi-microphone algorithms, an estimate of the relative transfer functions (RTFs) of the desired speaker is required. Recently, a computationally efficient RTF vector estimation method was proposed for acoustic sensor networks, assuming that the spatial coherence (SC) of the noise component between a local microphone array and multiple external microphones is low. Aiming at optimizing the output signal-to-noise ratio (SNR), this method linearly combines multiple RTF vector estimates, where the complex-valued weights are computed using a generalized eigenvalue decomposition (GEVD). In this paper, we perform a theoretical bias analysis for the SC-based RTF vector estimation method with multiple external microphones. Assuming a certain model for the noise field, we derive an analytical expression for the weights, showing that the optimal model-based weights are real-valued and only depend on the input SNR in the external microphones. Simulations with real-world recordings show a good accordance of the GEVD-based and the model-based weights. Nevertheless, the results also indicate that in practice, estimation errors occur which the model-based weights cannot account for.

Citations (2)

Summary

We haven't generated a summary for this paper yet.