Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Privacy Preserving Machine Learning for Electric Vehicles: A Survey (2205.08462v2)

Published 17 May 2022 in cs.CR

Abstract: In the recent years, the interest of individual users in modern electric vehicles (EVs) has grown exponentially. An EV has two major components, which make it different from traditional vehicles, first is its environment friendly nature because of being electric, and second is the interconnection ability of these vehicles because of modern information and communication technologies (ICTs). Both of these features are playing a key role in the development of EVs, and both academia and industry personals are working towards development of modern protocols for EV networks. All these interactions, whether from energy perspective or from communication perspective, both are generating a tremendous amount of data every day. In order to get most out of this data collected from EVs, research works have highlighted the use of machine/deep learning techniques for various EV applications. This interaction is quite fruitful, but it also comes with a critical concern of privacy leakage during collection, storage, and training of vehicular data. Therefore, alongside developing machine/deep learning techniques for EVs, it is also critical to ensure that they are resilient to private information leakage and attacks. In this paper, we begin with the discussion about essential background on EVs and privacy preservation techniques, followed by a brief overview of privacy preservation in EVs using machine learning techniques. Particularly, we also focus on an in-depth review of the integration of privacy techniques in EVs and highlighted different application scenarios in EVs. Alongside this, we provide a a very detailed survey of current works on privacy preserving machine/deep learning techniques used for modern EVs. Finally, we present the certain research issues, critical challenges, and future directions of research for researchers working in privacy preservation in EVs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Abdul Rahman Sani (1 paper)
  2. Muneeb Ul Hassan (13 papers)
  3. Jinjun Chen (17 papers)
  4. Longxiang Gao (38 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.