Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Compatible deep neural network framework with financial time series data, including data preprocessor, neural network model and trading strategy (2205.08382v1)

Published 11 May 2022 in cs.LG, cs.AI, and cs.CE

Abstract: Experience has shown that trading in stock and cryptocurrency markets has the potential to be highly profitable. In this light, considerable effort has been recently devoted to investigate how to apply machine learning and deep learning to interpret and predict market behavior. This research introduces a new deep neural network architecture and a novel idea of how to prepare financial data before feeding them to the model. In the data preparation part, the first step is to generate many features using technical indicators and then apply the XGBoost model for feature engineering. Splitting data into three categories and using separate autoencoders, we extract high-level mixed features at the second step. This data preprocessing is introduced to predict price movements. Regarding modeling, different convolutional layers, an long short-term memory unit, and several fully-connected layers have been designed to perform binary classification. This research also introduces a trading strategy to exploit the trained model outputs. Three different datasets are used to evaluate this method, where results indicate that this framework can provide us with profitable and robust predictions.

Citations (4)

Summary

We haven't generated a summary for this paper yet.