Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rethinking Reinforcement Learning based Logic Synthesis (2205.07614v3)

Published 16 May 2022 in cs.LG and cs.AR

Abstract: Recently, reinforcement learning has been used to address logic synthesis by formulating the operator sequence optimization problem as a Markov decision process. However, through extensive experiments, we find out that the learned policy makes decisions independent from the circuit features (i.e., states) and yields an operator sequence that is permutation invariant to some extent in terms of operators. Based on these findings, we develop a new RL-based method that can automatically recognize critical operators and generate common operator sequences generalizable to unseen circuits. Our algorithm is verified on both the EPFL benchmark, a private dataset and a circuit at industrial scale. Experimental results demonstrate that it achieves a good balance among delay, area and runtime, and is practical for industrial usage.

Citations (4)

Summary

We haven't generated a summary for this paper yet.