Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Combating COVID-19 using Generative Adversarial Networks and Artificial Intelligence for Medical Images: A Scoping Review (2205.07236v1)

Published 15 May 2022 in eess.IV, cs.CV, and cs.LG

Abstract: This review presents a comprehensive study on the role of GANs in addressing the challenges related to COVID-19 data scarcity and diagnosis. It is the first review that summarizes the different GANs methods and the lungs images datasets for COVID-19. It attempts to answer the questions related to applications of GANs, popular GAN architectures, frequently used image modalities, and the availability of source code. This review included 57 full-text studies that reported the use of GANs for different applications in COVID-19 lungs images data. Most of the studies (n=42) used GANs for data augmentation to enhance the performance of AI techniques for COVID-19 diagnosis. Other popular applications of GANs were segmentation of lungs and super-resolution of the lungs images. The cycleGAN and the conditional GAN were the most commonly used architectures used in nine studies each. 29 studies used chest X-Ray images while 21 studies used CT images for the training of GANs. For majority of the studies (n=47), the experiments were done and results were reported using publicly available data. A secondary evaluation of the results by radiologists/clinicians was reported by only two studies. Conclusion: Studies have shown that GANs have great potential to address the data scarcity challenge for lungs images of COVID-19. Data synthesized with GANs have been helpful to improve the training of the Convolutional Neural Network (CNN) models trained for the diagnosis of COVID-19. Besides, GANs have also contributed to enhancing the CNNs performance through the super-resolution of the images and segmentation. This review also identified key limitations of the potential transformation of GANs based methods in clinical applications.

Citations (13)

Summary

We haven't generated a summary for this paper yet.