Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FedHAP: Fast Federated Learning for LEO Constellations Using Collaborative HAPs (2205.07216v4)

Published 15 May 2022 in cs.LG, cs.NI, and eess.SP

Abstract: Low Earth Orbit (LEO) satellite constellations have seen a surge in deployment over the past few years by virtue of their ability to provide broadband Internet access as well as to collect vast amounts of Earth observational data that can be utilized to develop AI on a global scale. As traditional ML approaches that train a model by downloading satellite data to a ground station (GS) are not practical, Federated Learning (FL) offers a potential solution. However, existing FL approaches cannot be readily applied because of their excessively prolonged training time caused by the challenging satellite-GS communication environment. This paper proposes FedHAP, which introduces high-altitude platforms (HAPs) as distributed parameter servers (PSs) into FL for Satcom (or more concretely LEO constellations), to achieve fast and efficient model training. FedHAP consists of three components: 1) a hierarchical communication architecture, 2) a model dissemination algorithm, and 3) a model aggregation algorithm. Our extensive simulations demonstrate that FedHAP significantly accelerates FL model convergence as compared to state-of-the-art baselines, cutting the training time from several days down to a few hours, yet achieving higher accuracy.

Citations (30)

Summary

We haven't generated a summary for this paper yet.