Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pretraining Approaches for Spoken Language Recognition: TalTech Submission to the OLR 2021 Challenge (2205.07083v1)

Published 14 May 2022 in eess.AS and cs.CL

Abstract: This paper investigates different pretraining approaches to spoken language identification. The paper is based on our submission to the Oriental Language Recognition 2021 Challenge. We participated in two tracks of the challenge: constrained and unconstrained language recognition. For the constrained track, we first trained a Conformer-based encoder-decoder model for multilingual automatic speech recognition (ASR), using the provided training data that had transcripts available. The shared encoder of the multilingual ASR model was then finetuned for the language identification task. For the unconstrained task, we relied on both externally available pretrained models as well as external data: the multilingual XLSR-53 wav2vec2.0 model was finetuned on the VoxLingua107 corpus for the language recognition task, and finally finetuned on the provided target language training data, augmented with CommonVoice data. Our primary metric $C_{\rm avg}$ values on the Test set are 0.0079 for the constrained task and 0.0119 for the unconstrained task which resulted in the second place in both rankings. In post-evaluation experiments, we study the amount of target language data needed for training an accurate backend model, the importance of multilingual pretraining data, and compare different models as finetuning starting points.

Citations (5)

Summary

We haven't generated a summary for this paper yet.