Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Neural Machine Translation of Indigenous Languages with Multilingual Transfer Learning (2205.06993v1)

Published 14 May 2022 in cs.CL

Abstract: Machine translation (MT) involving Indigenous languages, including those possibly endangered, is challenging due to lack of sufficient parallel data. We describe an approach exploiting bilingual and multilingual pretrained MT models in a transfer learning setting to translate from Spanish to ten South American Indigenous languages. Our models set new SOTA on five out of the ten language pairs we consider, even doubling performance on one of these five pairs. Unlike previous SOTA that perform data augmentation to enlarge the train sets, we retain the low-resource setting to test the effectiveness of our models under such a constraint. In spite of the rarity of linguistic information available about the Indigenous languages, we offer a number of quantitative and qualitative analyses (e.g., as to morphology, tokenization, and orthography) to contextualize our results.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Wei-Rui Chen (5 papers)
  2. Muhammad Abdul-Mageed (102 papers)
Citations (7)