Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beyond General Purpose Machine Translation: The Need for Context-specific Empirical Research to Design for Appropriate User Trust (2205.06920v1)

Published 13 May 2022 in cs.HC, cs.AI, and cs.LG

Abstract: Machine Translation (MT) has the potential to help people overcome language barriers and is widely used in high-stakes scenarios, such as in hospitals. However, in order to use MT reliably and safely, users need to understand when to trust MT outputs and how to assess the quality of often imperfect translation results. In this paper, we discuss research directions to support users to calibrate trust in MT systems. We share findings from an empirical study in which we conducted semi-structured interviews with 20 clinicians to understand how they communicate with patients across language barriers, and if and how they use MT systems. Based on our findings, we advocate for empirical research on how MT systems are used in practice as an important first step to addressing the challenges in building appropriate trust between users and MT tools.

Citations (2)

Summary

We haven't generated a summary for this paper yet.