Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global Convergence of Hessenberg Shifted QR III: Approximate Ritz Values via Shifted Inverse Iteration (2205.06804v1)

Published 13 May 2022 in math.NA and cs.NA

Abstract: We give a self-contained randomized algorithm based on shifted inverse iteration which provably computes the eigenvalues of an arbitrary matrix $M\in\mathbb{C}{n\times n}$ up to backward error $\delta|M|$ in $O(n4+n3\log2(n/\delta)+\log(n/\delta)2\log\log(n/\delta))$ floating point operations using $O(\log2(n/\delta))$ bits of precision. While the $O(n4)$ complexity is prohibitive for large matrices, the algorithm is simple and may be useful for provably computing the eigenvalues of small matrices using controlled precision, in particular for computing Ritz values in shifted QR algorithms as in (Banks, Garza-Vargas, Srivastava, 2022).

Citations (5)

Summary

We haven't generated a summary for this paper yet.