Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

KG-SP: Knowledge Guided Simple Primitives for Open World Compositional Zero-Shot Learning (2205.06784v1)

Published 13 May 2022 in cs.CV

Abstract: The goal of open-world compositional zero-shot learning (OW-CZSL) is to recognize compositions of state and objects in images, given only a subset of them during training and no prior on the unseen compositions. In this setting, models operate on a huge output space, containing all possible state-object compositions. While previous works tackle the problem by learning embeddings for the compositions jointly, here we revisit a simple CZSL baseline and predict the primitives, i.e. states and objects, independently. To ensure that the model develops primitive-specific features, we equip the state and object classifiers with separate, non-linear feature extractors. Moreover, we estimate the feasibility of each composition through external knowledge, using this prior to remove unfeasible compositions from the output space. Finally, we propose a new setting, i.e. CZSL under partial supervision (pCZSL), where either only objects or state labels are available during training, and we can use our prior to estimate the missing labels. Our model, Knowledge-Guided Simple Primitives (KG-SP), achieves state of the art in both OW-CZSL and pCZSL, surpassing most recent competitors even when coupled with semi-supervised learning techniques. Code available at: https://github.com/ExplainableML/KG-SP.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Shyamgopal Karthik (19 papers)
  2. Massimiliano Mancini (66 papers)
  3. Zeynep Akata (144 papers)
Citations (33)
Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com