Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interlock-Free Multi-Aspect Rationalization for Text Classification (2205.06756v1)

Published 13 May 2022 in cs.CL, cs.IR, and cs.LG

Abstract: Explanation is important for text classification tasks. One prevalent type of explanation is rationales, which are text snippets of input text that suffice to yield the prediction and are meaningful to humans. A lot of research on rationalization has been based on the selective rationalization framework, which has recently been shown to be problematic due to the interlocking dynamics. In this paper, we show that we address the interlocking problem in the multi-aspect setting, where we aim to generate multiple rationales for multiple outputs. More specifically, we propose a multi-stage training method incorporating an additional self-supervised contrastive loss that helps to generate more semantically diverse rationales. Empirical results on the beer review dataset show that our method improves significantly the rationalization performance.

Summary

We haven't generated a summary for this paper yet.