Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LSI: A Learned Secondary Index Structure (2205.05769v1)

Published 11 May 2022 in cs.DB and cs.LG

Abstract: Learned index structures have been shown to achieve favorable lookup performance and space consumption compared to their traditional counterparts such as B-trees. However, most learned index studies have focused on the primary indexing setting, where the base data is sorted. In this work, we investigate whether learned indexes sustain their advantage in the secondary indexing setting. We introduce Learned Secondary Index (LSI), a first attempt to use learned indexes for indexing unsorted data. LSI works by building a learned index over a permutation vector, which allows binary search to performed on the unsorted base data using random access. We additionally augment LSI with a fingerprint vector to accelerate equality lookups. We show that LSI achieves comparable lookup performance to state-of-the-art secondary indexes while being up to 6x more space efficient.

Citations (6)

Summary

We haven't generated a summary for this paper yet.