Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
146 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unisolvent and minimal physical degrees of freedom for the second family of polynomial differential forms (2205.05746v1)

Published 11 May 2022 in math.NA, cs.NA, and math.DG

Abstract: The principal aim of this work is to provide a family of unisolvent and minimal physical degrees of freedom, called weights, for N\'ed\'elec second family of finite elements. Such elements are thought of as differential forms $ \mathcal{P}_r \Lambdak (T)$ whose coefficients are polynomials of degree $ r $. We confine ourselves in the two dimensional case $ \mathbb{R}2 $ since it is easy to visualise and offers a neat and elegant treatment; however, we present techniques that can be extended to $ n > 2 $ with some adjustments of technical details. In particular, we use techniques of homological algebra to obtain degrees of freedom for the whole diagram $$ \mathcal{P}_r \Lambda0 (T) \rightarrow \mathcal{P}_r \Lambda1 (T) \rightarrow \mathcal{P}_r \Lambda2 (T), $$ being $ T $ a $2$-simplex of $ \mathbb{R}2 $. This work pairs its companions recently appeared for N\'ed\'elec first family of finite elements.

Citations (3)

Summary

We haven't generated a summary for this paper yet.