Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-driven Tensor Train Gradient Cross Approximation for Hamilton-Jacobi-Bellman Equations (2205.05109v2)

Published 10 May 2022 in math.NA, cs.NA, and math.OC

Abstract: A gradient-enhanced functional tensor train cross approximation method for the resolution of the Hamilton-Jacobi-BeLLMan (HJB) equations associated to optimal feedback control of nonlinear dynamics is presented. The procedure uses samples of both the solution of the HJB equation and its gradient to obtain a tensor train approximation of the value function. The collection of the data for the algorithm is based on two possible techniques: Pontryagin Maximum Principle and State Dependent Riccati Equations. Several numerical tests are presented in low and high dimension showing the effectiveness of the proposed method and its robustness with respect to inexact data evaluations, provided by the gradient information. The resulting tensor train approximation paves the way towards fast synthesis of the control signal in real-time applications.

Citations (20)

Summary

We haven't generated a summary for this paper yet.