Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s
GPT-5 High 42 tok/s Pro
GPT-4o 109 tok/s
GPT OSS 120B 477 tok/s Pro
Kimi K2 222 tok/s Pro
2000 character limit reached

Tangent ray foliations and their associated outer billiards (2205.04443v1)

Published 9 May 2022 in math.GT, math.DG, and math.DS

Abstract: Let $v$ be a unit vector field on a complete, umbilic (but not totally geodesic) hypersurface $N$ in a space form; for example on the unit sphere $S{2k-1} \subset \mathbb{R}{2k}$, or on a horosphere in hyperbolic space. We give necessary and sufficient conditions on $v$ for the rays with initial velocities $v$ (and $-v$) to foliate the exterior $U$ of $N$. We find and explore relationships among these vector fields, geodesic vector fields, and contact structures on $N$. When the rays corresponding to each of $\pm v$ foliate $U$, $v$ induces an outer billiard map whose billiard table is $U$. We describe the unit vector fields on $N$ whose associated outer billiard map is volume preserving. Also we study a particular example in detail, namely, when $N \simeq \mathbb{R}3$ is a horosphere of the four-dimensional hyperbolic space and $v$ is the unit vector field on $N$ obtained by normalizing the stereographic projection of a Hopf vector field on $S{3}$. In the corresponding outer billiard map we find explicit periodic orbits, unbounded orbits, and bounded nonperiodic orbits. We conclude with several questions regarding the topology and geometry of bifoliating vector fields and the dynamics of their associated outer billiards.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.