Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High-Cardinality Geometrical Constellation Shaping for the Nonlinear Fibre Channel (2205.04391v2)

Published 9 May 2022 in cs.IT, eess.SP, and math.IT

Abstract: This paper presents design methods for highly efficient optimisation of geometrically shaped constellations to maximise data throughput in optical communications. It describes methods to analytically calculate the information-theoretical loss and the gradient of this loss as a function of the input constellation shape. The gradients of the \ac{MI} and \ac{GMI} are critical to the optimisation of geometrically-shaped constellations. It presents the analytical derivative of the achievable information rate metrics with respect to the input constellation. The proposed method allows for improved design of higher cardinality and higher-dimensional constellations for optimising both linear and nonlinear fibre transmission throughput. Near-capacity achieving constellations with up to 8192 points for both 2 and 4 dimensions, with generalised mutual information (GMI) within 0.06 bit/2Dsymbol of additive white Gaussian noise channel (AWGN) capacity, are presented. Additionally, a design algorithm reducing the design computation time from days to minutes is introduced, allowing the presentation of optimised constellations for both linear AWGN and nonlinear fibre channels for a wide range of signal-to-noise ratios.

Citations (26)

Summary

We haven't generated a summary for this paper yet.