Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Over-the-Air Federated Multi-Task Learning via Model Sparsification and Turbo Compressed Sensing (2205.03810v1)

Published 8 May 2022 in cs.IT, cs.LG, and math.IT

Abstract: To achieve communication-efficient federated multitask learning (FMTL), we propose an over-the-air FMTL (OAFMTL) framework, where multiple learning tasks deployed on edge devices share a non-orthogonal fading channel under the coordination of an edge server (ES). In OA-FMTL, the local updates of edge devices are sparsified, compressed, and then sent over the uplink channel in a superimposed fashion. The ES employs over-the-air computation in the presence of intertask interference. More specifically, the model aggregations of all the tasks are reconstructed from the channel observations concurrently, based on a modified version of the turbo compressed sensing (Turbo-CS) algorithm (named as M-Turbo-CS). We analyze the performance of the proposed OA-FMTL framework together with the M-Turbo-CS algorithm. Furthermore, based on the analysis, we formulate a communication-learning optimization problem to improve the system performance by adjusting the power allocation among the tasks at the edge devices. Numerical simulations show that our proposed OAFMTL effectively suppresses the inter-task interference, and achieves a learning performance comparable to its counterpart with orthogonal multi-task transmission. It is also shown that the proposed inter-task power allocation optimization algorithm substantially reduces the overall communication overhead by appropriately adjusting the power allocation among the tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Haoming Ma (4 papers)
  2. Xiaojun Yuan (123 papers)
  3. Zhi Ding (86 papers)
  4. Dian Fan (6 papers)
  5. Jun Fang (125 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.