Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Scalable Algorithm for Shape Optimization with Geometric Constraints in Banach Spaces (2205.01912v1)

Published 4 May 2022 in math.OC

Abstract: This work develops an algorithm for PDE-constrained shape optimization based on Lipschitz transformations. Building on previous work in this field, the $p$-Laplace operator is utilized to approximate a descent method for Lipschitz shapes. In particular, it is shown how geometric constraints are algorithmically incorporated avoiding penalty terms by assigning them to the subproblem of finding a suitable descent direction. A special focus is placed on the scalability of the proposed methods for large scale parallel computers via the application of multigrid solvers. The preservation of mesh quality under large deformations, where shape singularities have to be smoothed or generated within the optimization process, is also discussed. It is shown that the interaction of hierarchically refined grids and shape optimization can be realized by the choice of appropriate descent directions. The performance of the proposed methods is demonstrated for energy dissipation minimization in fluid dynamics applications.

Summary

We haven't generated a summary for this paper yet.