Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
81 tokens/sec
Gemini 2.5 Pro Premium
33 tokens/sec
GPT-5 Medium
31 tokens/sec
GPT-5 High Premium
22 tokens/sec
GPT-4o
78 tokens/sec
DeepSeek R1 via Azure Premium
92 tokens/sec
GPT OSS 120B via Groq Premium
436 tokens/sec
Kimi K2 via Groq Premium
209 tokens/sec
2000 character limit reached

Toward Robust Spiking Neural Network Against Adversarial Perturbation (2205.01625v1)

Published 12 Apr 2022 in cs.NE, cs.AI, cs.CR, and cs.LG

Abstract: As spiking neural networks (SNNs) are deployed increasingly in real-world efficiency critical applications, the security concerns in SNNs attract more attention. Currently, researchers have already demonstrated an SNN can be attacked with adversarial examples. How to build a robust SNN becomes an urgent issue. Recently, many studies apply certified training in artificial neural networks (ANNs), which can improve the robustness of an NN model promisely. However, existing certifications cannot transfer to SNNs directly because of the distinct neuron behavior and input formats for SNNs. In this work, we first design S-IBP and S-CROWN that tackle the non-linear functions in SNNs' neuron modeling. Then, we formalize the boundaries for both digital and spike inputs. Finally, we demonstrate the efficiency of our proposed robust training method in different datasets and model architectures. Based on our experiment, we can achieve a maximum $37.7\%$ attack error reduction with $3.7\%$ original accuracy loss. To the best of our knowledge, this is the first analysis on robust training of SNNs.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.