Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Witten-Reshetikhin-Turaev invariants and homological blocks for plumbed homology spheres (2205.01282v2)

Published 3 May 2022 in math.GT, hep-th, math-ph, math.MP, math.NT, and math.QA

Abstract: In this paper, we prove a conjecture by Gukov-Pei-Putrov-Vafa for a wide class of plumbed 3-manifolds. Their conjecture states that Witten-Reshetikhin-Turaev (WRT) invariants are radial limits of homological blocks, which are $ q $-series introduced by them for plumbed 3-manifolds with negative definite linking matrices. The most difficult point in our proof is to prove the vanishing of weighted Gauss sums that appear in coefficients of negative degree in asymptotic expansions of homological blocks. To deal with it, we develop a new technique for asymptotic expansions, which enables us to compare asymptotic expansions of rational functions and false theta functions related to WRT invariants and homological blocks, respectively. In our technique, our vanishing results follow from holomorphy of such rational functions.

Summary

We haven't generated a summary for this paper yet.