Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discretisation-adaptive regularisation of statistical inverse problems (2204.14037v1)

Published 29 Apr 2022 in math.NA, cs.NA, math.ST, and stat.TH

Abstract: We consider linear inverse problems under white noise. These types of problems can be tackled with, e.g., iterative regularisation methods and the main challenge is to determine a suitable stopping index for the iteration. Convergence results for popular adaptive methods to determine the stopping index often come along with restrictions, e.g. concerning the type of ill-posedness of the problem, the unknown solution or the error distribution. In the recent work \cite{jahn2021optimal} a modification of the discrepancy principle, one of the most widely used adaptive methods, applied to spectral cut-off regularisation was presented which provides excellent convergence properties in general settings. Here we investigate the performance of the modified discrepancy principle with other filter based regularisation methods and we hereby focus on the iterative Landweber method. We show that the method yields optimal convergence rates and present some numerical experiments confirming that it is also attractive in terms of computational complexity. The key idea is to incorporate and modify the discretisation dimension in an adaptive manner.

Citations (3)

Summary

We haven't generated a summary for this paper yet.