Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tag-assisted Multimodal Sentiment Analysis under Uncertain Missing Modalities (2204.13707v1)

Published 28 Apr 2022 in cs.LG and cs.AI

Abstract: Multimodal sentiment analysis has been studied under the assumption that all modalities are available. However, such a strong assumption does not always hold in practice, and most of multimodal fusion models may fail when partial modalities are missing. Several works have addressed the missing modality problem; but most of them only considered the single modality missing case, and ignored the practically more general cases of multiple modalities missing. To this end, in this paper, we propose a Tag-Assisted Transformer Encoder (TATE) network to handle the problem of missing uncertain modalities. Specifically, we design a tag encoding module to cover both the single modality and multiple modalities missing cases, so as to guide the network's attention to those missing modalities. Besides, we adopt a new space projection pattern to align common vectors. Then, a Transformer encoder-decoder network is utilized to learn the missing modality features. At last, the outputs of the Transformer encoder are used for the final sentiment classification. Extensive experiments are conducted on CMU-MOSI and IEMOCAP datasets, showing that our method can achieve significant improvements compared with several baselines.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jiandian Zeng (3 papers)
  2. Tianyi Liu (58 papers)
  3. Jiantao Zhou (61 papers)
Citations (46)

Summary

We haven't generated a summary for this paper yet.