Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 30 tok/s Pro
GPT-4o 97 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 228 tok/s Pro
2000 character limit reached

Attention Mechanism in Neural Networks: Where it Comes and Where it Goes (2204.13154v1)

Published 27 Apr 2022 in cs.LG

Abstract: A long time ago in the machine learning literature, the idea of incorporating a mechanism inspired by the human visual system into neural networks was introduced. This idea is named the attention mechanism, and it has gone through a long development period. Today, many works have been devoted to this idea in a variety of tasks. Remarkable performance has recently been demonstrated. The goal of this paper is to provide an overview from the early work on searching for ways to implement attention idea with neural networks until the recent trends. This review emphasizes the important milestones during this progress regarding different tasks. By this way, this study aims to provide a road map for researchers to explore the current development and get inspired for novel approaches beyond the attention.

Citations (109)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com