Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Can deep learning match the efficiency of human visual long-term memory in storing object details? (2204.13061v3)

Published 27 Apr 2022 in cs.LG, cs.NE, and q-bio.NC

Abstract: Humans have a remarkably large capacity to store detailed visual information in long-term memory even after a single exposure, as demonstrated by classic experiments in psychology. For example, Standing (1973) showed that humans could recognize with high accuracy thousands of pictures that they had seen only once a few days prior to a recognition test. In deep learning, the primary mode of incorporating new information into a model is through gradient descent in the model's parameter space. This paper asks whether deep learning via gradient descent can match the efficiency of human visual long-term memory to incorporate new information in a rigorous, head-to-head, quantitative comparison. We answer this in the negative: even in the best case, models learning via gradient descent require approximately 10 exposures to the same visual materials in order to reach a recognition memory performance humans achieve after only a single exposure. Prior knowledge induced via pretraining and bigger model sizes improve performance, but these improvements are not very visible after a single exposure (it takes a few exposures for the improvements to become apparent), suggesting that simply scaling up the pretraining data size or model size might not be a feasible strategy to reach human-level memory efficiency.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)