Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TERMinator: A Neural Framework for Structure-Based Protein Design using Tertiary Repeating Motifs (2204.13048v1)

Published 27 Apr 2022 in q-bio.BM and cs.LG

Abstract: Computational protein design has the potential to deliver novel molecular structures, binders, and catalysts for myriad applications. Recent neural graph-based models that use backbone coordinate-derived features show exceptional performance on native sequence recovery tasks and are promising frameworks for design. A statistical framework for modeling protein sequence landscapes using Tertiary Motifs (TERMs), compact units of recurring structure in proteins, has also demonstrated good performance on protein design tasks. In this work, we investigate the use of TERM-derived data as features in neural protein design frameworks. Our graph-based architecture, TERMinator, incorporates TERM-based and coordinate-based information and outputs a Potts model over sequence space. TERMinator outperforms state-of-the-art models on native sequence recovery tasks, suggesting that utilizing TERM-based and coordinate-based features together is beneficial for protein design.

Citations (12)

Summary

We haven't generated a summary for this paper yet.