Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MovieMat: Context-aware Movie Recommendation with Matrix Factorization by Matrix Fitting (2204.13003v1)

Published 27 Apr 2022 in cs.IR

Abstract: Movie Recommender System is widely applied in commercial environments such as NetFlix and Tubi. Classic recommender models utilize technologies such as collaborative filtering, learning to rank, matrix factorization and deep learning models to achieve lower marketing expenses and higher revenues. However, audience of movies have different ratings of the same movie in different contexts. Important movie watching contexts include audience mood, location, weather, etc. Tobe able to take advantage of contextual information is of great benefit to recommender builders. However, popular techniques such as tensor factorization consumes an impractical amount of storage, which greatly reduces its feasibility in real world environment. In this paper, we take advantage of the MatMat framework, which factorizes matrices by matrix fitting to build a context-aware movie recommender system that is superior to classic matrix factorization and comparable in the fairness metric.

Citations (6)

Summary

We haven't generated a summary for this paper yet.