Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Method of Query Graph Reranking for Knowledge Base Question Answering (2204.12808v1)

Published 27 Apr 2022 in cs.CL

Abstract: This paper presents a novel reranking method to better choose the optimal query graph, a sub-graph of knowledge graph, to retrieve the answer for an input question in Knowledge Base Question Answering (KBQA). Existing methods suffer from a severe problem that there is a significant gap between top-1 performance and the oracle score of top-n results. To address this problem, our method divides the choosing procedure into two steps: query graph ranking and query graph reranking. In the first step, we provide top-n query graphs for each question. Then we propose to rerank the top-n query graphs by combining with the information of answer type. Experimental results on two widely used datasets show that our proposed method achieves the best results on the WebQuestions dataset and the second best on the ComplexQuestions dataset.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yonghui Jia (3 papers)
  2. Wenliang Chen (33 papers)

Summary

We haven't generated a summary for this paper yet.