Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MemFHE: End-to-End Computing with Fully Homomorphic Encryption in Memory (2204.12557v1)

Published 26 Apr 2022 in cs.CR and cs.AR

Abstract: The increasing amount of data and the growing complexity of problems has resulted in an ever-growing reliance on cloud computing. However, many applications, most notably in healthcare, finance or defense, demand security and privacy which today's solutions cannot fully address. Fully homomorphic encryption (FHE) elevates the bar of today's solutions by adding confidentiality of data during processing. It allows computation on fully encrypted data without the need for decryption, thus fully preserving privacy. To enable processing encrypted data at usable levels of classic security, e.g., 128-bit, the encryption procedure introduces noticeable data size expansion - the ciphertext is much bigger than the native aggregate of native data types. In this paper, we present MemFHE which is the first accelerator of both client and server for the latest Ring-GSW (Gentry, Sahai, and Waters) based homomorphic encryption schemes using Processing In Memory (PIM). PIM alleviates the data movement issues with large FHE encrypted data, while providing in-situ execution and extensive parallelism needed for FHE's polynomial operations. While the client-PIM can homomorphically encrypt and decrypt data, the server-PIM can process homomorphically encrypted data without decryption. MemFHE's server-PIM is pipelined and is designed to provide flexible bootstrapping, allowing two encryption techniques and various FHE security-levels based on the application requirements. We evaluate MemFHE for various security-levels and compare it with state-of-the-art CPU implementations for Ring-GSW based FHE. MemFHE is up to 20kx (265x) faster than CPU (GPU) for FHE arithmetic operations and provides on average 2007x higher throughput than the state-of-the-art while implementing neural networks with FHE.

Citations (23)

Summary

We haven't generated a summary for this paper yet.