Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis of a Spatially Correlated Vehicular Network Assisted by Cox-distributed Vehicle Relays (2204.12243v4)

Published 26 Apr 2022 in eess.SP, cs.IT, and math.IT

Abstract: In vehicle-to-all (V2X) communications, roadside units (RSUs) play an essential role in connecting various network devices. In some cases, users may not be well-served by RSUs due to congestion, attenuation, or interference. In these cases, vehicular relays associated with RSUs can be used to serve those users. This paper uses stochastic geometry to model and analyze a spatially correlated heterogeneous vehicular network where both RSUs and vehicular relays serve network users such as pedestrians or other vehicles. We present an analytical model where the spatial correlation between roads, RSUs, relays, and users is systematically modeled via Cox point processes. Assuming users are associated with either RSUs or relays, we derive the association probability and the coverage probability of the typical user. Then, we derive the user throughput by considering interactions of links unique to the proposed network. This paper gives practical insights into designing spatially correlated vehicular networks assisted by vehicle relays. For instance, we express the network performance such as the user association, SIR coverage probability, and the network throughput as the functions of network key geometric variables. In practice, this helps one to optimize the network so as to achieve ultra reliability or maximum user throughput of a spatially correlated vehicular networks by varying key aspects such as the relay density or the bandwidth for relays.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. C.-S. Choi, “User association in a heterogeneous vehicular network with roadside units and vehicle relays,” IEEE Wireless Commun. Lett., vol. 11, no. 11, pp. 2345–2349, 2022.
  2. J. B. Kenney, “Dedicated short-range communications (DSRC) standards in the United States,” Proceedings of the IEEE, vol. 99, no. 7, pp. 1162–1182, July 2011.
  3. J. Jin, J. Gubbi, S. Marusic, and M. Palaniswami, “An information framework for creating a smart city through Internet of Things,” IEEE Internet Things J., vol. 1, no. 2, pp. 112–121, 2014.
  4. N. Lu, N. Cheng, N. Zhang, X. Shen, and J. W. Mark, “Connected vehicles: Solutions and challenges,” IEEE Internet Things J., vol. 1, no. 4, pp. 289–299, 2014.
  5. 3GPP TR 36.885, “Study on LTE-based V2X services,” 3GPP TR 36.885.
  6. S. Chen, J. Hu, Y. Shi, Y. Peng, J. Fang, R. Zhao, and L. Zhao, “Vehicle-to-everything (V2X) services supported by LTE-based systems and 5G,” IEEE Commun. Standards Mag., vol. 1, no. 2, pp. 70–76, 2017.
  7. 3GPP TS 22.816, “Service requirements for enhanced V2X scenarios,” 3GPP TS 22.816.
  8. 3GPP TR 22.836, “Study on enhancement of 3GPP support for 5G V2X services,” 3GPP TR 22.836.
  9. M. H. C. Garcia, A. Molina-Galan, M. Boban, J. Gozalvez, B. Coll-Perales, T. Şahin, and A. Kousaridas, “A tutorial on 5G NR V2X communications,” IEEE Commun. Surv&Tuts, vol. 23, no. 3, pp. 1972–2026, 2021.
  10. 3GPP TR 38.836, “Study on NR sidelink relay,” 3GPP TR 38.836.
  11. 3GPP TR 38.874, “NR; study on integrated access and backhaul,” 3GPP TR 38.874.
  12. F. Baccelli and S. Zuyev, “Stochastic geometry models of mobile communication networks,” Frontiers in queueing, pp. 227–243, 1997.
  13. M. Haenggi, J. G. Andrews, F. Baccelli, O. Dousse, and M. Franceschetti, “Stochastic geometry and random graphs for the analysis and design of wireless networks,” IEEE J. Sel. Areas Commun., vol. 27, no. 7, pp. 1029–1046, 2009.
  14. F. Baccelli, B. Blaszczyszyn, and P. Muhlethaler, “An Aloha protocol for multihop mobile wireless networks,” IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 421–436, Feb 2006.
  15. J. G. Andrews, F. Baccelli, and R. K. Ganti, “A tractable approach to coverage and rate in cellular networks,” IEEE Trans. Commun., vol. 59, no. 11, pp. 3122–3134, 2011.
  16. H. S. Dhillon, R. K. Ganti, F. Baccelli, and J. G. Andrews, “Modeling and analysis of K-tier downlink heterogeneous cellular networks,” IEEE J. Sel. Areas Commun., vol. 30, no. 3, pp. 550–560, 2012.
  17. S. Singh, H. S. Dhillon, and J. G. Andrews, “Offloading in heterogeneous networks: Modeling, analysis, and design insights,” IEEE Trans. Wireless Commun., vol. 12, no. 5, pp. 2484–2497, 2013.
  18. F. Morlot, “A population model based on a Poisson line tessellation,” in Proc. IEEE WiOpt, 2012, pp. 337–342.
  19. V. V. Chetlur and H. S. Dhillon, “Coverage analysis of a vehicular network modeled as Cox process driven by Poisson line process,” IEEE Trans. Wireless Commun., vol. 17, no. 7, pp. 4401–4416, July 2018.
  20. C.-S. Choi and F. Baccelli, “An analytical framework for coverage in cellular networks leveraging vehicles,” IEEE Trans. Commun., vol. 66, no. 10, pp. 4950–4964, Oct 2018.
  21. ——, “Poisson Cox point processes for vehicular networks,” IEEE Trans. Veh. Technol., vol. 67, no. 10, pp. 10 160–10 165, Oct 2018.
  22. V. V. Chetlur and H. S. Dhillon, “Success probability and area spectral efficiency of a VANET modeled as a Cox process,” IEEE Wireless Commun. Lett., vol. 7, no. 5, pp. 856–859, 2018.
  23. C.-S. Choi and F. Baccelli, “Spatial and temporal analysis of direct communications from static devices to mobile vehicles,” IEEE Trans. Wireless Commun., vol. 18, no. 11, pp. 5128–5140, 2019.
  24. C.-S. Choi, F. Baccelli, and G. de Veciana, “Densification leveraging mobility: An IoT architecture based on mesh networking and vehicles,” in Proc. IEEE/ACM MobiHoc, 2018, p. 71–80.
  25. Y. Sun, Z. Ding, X. Dai, K. Navaie, and D. K. C. So, “Performance of downlink NOMA in vehicular communication networks: An analysis based on Poisson line Cox point process,” IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 14 001–14 006, 2020.
  26. C.-S. Choi and F. Baccelli, “Modeling and analysis of vehicle safety message broadcast in cellular networks,” IEEE Trans. Wireless Commun., vol. 20, no. 7, pp. 4087–4099, 2021.
  27. Y. Sun, Z. Ding, and X. Dai, “On the outage performance of network noma (N-NOMA) modeled by Poisson line Cox point process,” IEEE Trans. Veh. Technol., vol. 70, no. 8, pp. 7936–7950, 2021.
  28. K. Koufos, H. S. Dhillon, M. Dianati, and C. P. Dettmann, “On the k𝑘kitalic_k nearest-neighbor path distance from the typical intersection in the manhattan poisson line cox process,” IEEE Trans. Mobile Comput., vol. 22, no. 3, pp. 1659–1671, 2023.
  29. S. Kassir, G. de Veciana, N. Wang, X. Wang, and P. Palacharla, “Analysis of opportunistic relaying and load balancing gains through V2V clustering,” IEEE Trans. Veh. Technol., vol. 71, no. 9, pp. 9896–9911, 2022.
  30. T.-X. Zheng, Y. Wen, H.-W. Liu, Y. Ju, H.-M. Wang, K.-K. Wong, and J. Yuan, “Physical-layer security of uplink mmwave transmissions in cellular V2X networks,” IEEE Trans. Wireless Commun., vol. 21, no. 11, pp. 9818–9833, 2022.
  31. C.-S. Choi and F. Baccelli, “LOS coverage area in vehicular networks with Cox-distributed roadside units and relays,” IEEE Trans. Veh. Technol., vol. 72, no. 6, pp. 7772–7782, 2023.
  32. Y. Qin, M. A. Kishk, and M.-S. Alouini, “A dominant interferer plus mean field-based approximation for SINR meta distribution in wireless networks,” IEEE Trans. Commun., vol. 71, no. 6, pp. 3663–3678, 2023.
  33. 3GPP TR 37.885, “Study on evaluation methodology of new vehicle-to-everything (V2X) use cases for LTE and NR.”
  34. 3GPP TR 38.211, “NR; physical channels and modulation,” 3GPP TR 38211.
  35. 3GPP TR 38.213, “NR; physical layer procedures for control,” 3GPP TR 38213.
  36. F. Baccelli and B. Błaszczyszyn, “Stochastic geometry and wireless networks: volume I theory,” Foundations and Trends in Networking, vol. 3, no. 3–4, pp. 249–449, 2010.
  37. H.-S. Jo, Y. J. Sang, P. Xia, and J. G. Andrews, “Heterogeneous cellular networks with flexible cell association: A comprehensive downlink sinr analysis,” IEEE Trans. Wireless Commun., vol. 11, no. 10, pp. 3484–3495, 2012.
  38. S. Singh, F. Baccelli, and J. G. Andrews, “On association cells in random heterogeneous networks,” IEEE Wireless Commun. Lett., vol. 3, no. 1, pp. 70–73, 2014.
  39. 3GPP TR 38.901, “NR; study on channel model for frequencies from 0.5 to 100 GHz,” 3GPP TR 38901.
  40. F. Baccelli and B. Błaszczyszyn, “Stochastic geometry and wireless networks: Volume II applications,” Foundations and Trends in Networking, vol. 4, no. 1–2, pp. 1–312, 2010.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com