Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the codimension-two cohomology of $\mathrm{SL}_n(\mathbb{Z})$ (2204.11967v3)

Published 25 Apr 2022 in math.AT, math.GR, math.GT, and math.NT

Abstract: Borel-Serre proved that $\mathrm{SL}_n(\mathbb{Z})$ is a virtual duality group of dimension $n \choose 2$ and the Steinberg module $\mathrm{St}_n(\mathbb{Q})$ is its dualizing module. This module is the top-dimensional homology group of the Tits building associated to $\mathrm{SL}_n(\mathbb{Q})$. We determine the "relations among the relations" of this Steinberg module. That is, we construct an explicit partial resolution of length two of the $\mathrm{SL}_n(\mathbb{Z})$-module $\mathrm{St}_n(\mathbb{Q})$. We use this partial resolution to show the codimension-2 rational cohomology group $H{{n \choose 2} -2}(\mathrm{SL}_n(\mathbb{Z});\mathbb{Q})$ of $\mathrm{SL}_n(\mathbb{Z})$ vanishes for $n \geq 3$. This resolves a case of a conjecture of Church-Farb-Putman. We also produce lower bounds for the codimension-1 cohomology of certain congruence subgroups of $\mathrm{SL}_n(\mathbb{Z})$.

Summary

We haven't generated a summary for this paper yet.