Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Resistive instabilities in sinusoidal shear flows with a streamwise magnetic field (2204.10875v1)

Published 22 Apr 2022 in physics.flu-dyn, astro-ph.EP, astro-ph.SR, and physics.plasm-ph

Abstract: We investigate the linear stability of a sinusoidal shear flow with an initially uniform streamwise magnetic field in the framework of incompressible magnetohydrodynamics (MHD) with finite resistivity and viscosity. This flow is known to be unstable to the Kelvin-Helmholtz instability in the hydrodynamic case. The same is true in ideal MHD, where dissipation is neglected, provided the magnetic field strength does not exceed a critical threshold beyond which magnetic tension stabilizes the flow. Here, we demonstrate that including viscosity and resistivity introduces two new modes of instability. One of these modes, which we call a resistively-unstable Alfv\'en wave due to its connection to shear Alfv\'en waves, exists for any nonzero magnetic field strength as long as the magnetic Prandtl number $Pm < 1$. We present a reduced model for this instability that reveals its excitation mechanism to be the negative eddy viscosity of periodic shear flows described by Dubrulle & Frisch (1991). Finally, we demonstrate numerically that this mode saturates in a quasi-stationary state dominated by counter-propagating solitons.

Summary

We haven't generated a summary for this paper yet.