Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An active approach towards monitoring and enhancing drivers' capabilities -- the ADAM cogtec solution (2204.10853v1)

Published 5 Apr 2022 in cs.HC and cs.CY

Abstract: Driver's cognitive ability at a given moment is the most elusive variable in assessing driver's safety. In contrast to other physical conditions, such as short-sight, or manual disability cognitive ability is transient. Safety regulations attempt to reduce risk related to driver's cognitive ability by removing risk factors such as alcohol or drug consumption, forbidding secondary tasks such as texting, and urging drivers to take breaks when feeling tired. However, one cannot regulate all factors that affect driver's cognition, furthermore, the driver's momentary cognitive ability in most cases is covert even to driver. Here, we introduce an active approach aiming at monitoring a specific cognitive process that is affected by all these forementioned causes and directly affects the driver's performance in the driving task. We lean on the scientific approach that was framed by Karl Friston (Friston, 2010). We developed a closed loop-method in which driver's ocular responses to visual probing were recorded. Machine-learning-algorithms were trained on ocular responses of vigilant condition and were able to detect decrease in capability due fatigue and substance abuse. Our results show that we manage to correctly classify subjects with impaired and unimpaired cognitive process regardless of the cause of impairment (77% accuracy, 5% false alarms).

Summary

We haven't generated a summary for this paper yet.