Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable symmetric Tucker tensor decomposition (2204.10824v2)

Published 22 Apr 2022 in math.NA and cs.NA

Abstract: We study the best low-rank Tucker decomposition of symmetric tensors. The motivating application is decomposing higher-order multivariate moments. Moment tensors have special structure and are important to various data science problems. We advocate for projected gradient descent (PGD) method and higher-order eigenvalue decomposition (HOEVD) approximation as computation schemes. Most importantly, we develop scalable adaptations of the basic PGD and HOEVD methods to decompose sample moment tensors. With the help of implicit and streaming techniques, we evade the overhead cost of building and storing the moment tensor. Such reductions make computing the Tucker decomposition realizable for large data instances in high dimensions. Numerical experiments demonstrate the efficiency of the algorithms and the applicability of moment tensor decompositions to real-world datasets. Finally we study the convergence on the Grassmannian manifold, and prove that the update sequence derived by the PGD solver achieves first- and second-order criticality.

Citations (2)

Summary

We haven't generated a summary for this paper yet.