Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generative De Novo Protein Design with Global Context (2204.10673v2)

Published 21 Apr 2022 in q-bio.BM, cs.AI, and cs.LG

Abstract: The linear sequence of amino acids determines protein structure and function. Protein design, known as the inverse of protein structure prediction, aims to obtain a novel protein sequence that will fold into the defined structure. Recent works on computational protein design have studied designing sequences for the desired backbone structure with local positional information and achieved competitive performance. However, similar local environments in different backbone structures may result in different amino acids, indicating that protein structure's global context matters. Thus, we propose the Global-Context Aware generative de novo protein design method (GCA), consisting of local and global modules. While local modules focus on relationships between neighbor amino acids, global modules explicitly capture non-local contexts. Experimental results demonstrate that the proposed GCA method outperforms state-of-the-arts on de novo protein design. Our code and pretrained model will be released.

Citations (7)

Summary

We haven't generated a summary for this paper yet.