Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Log-based Sparse Nonnegative Matrix Factorization for Data Representation (2204.10647v1)

Published 22 Apr 2022 in cs.LG

Abstract: Nonnegative matrix factorization (NMF) has been widely studied in recent years due to its effectiveness in representing nonnegative data with parts-based representations. For NMF, a sparser solution implies better parts-based representation.However, current NMF methods do not always generate sparse solutions.In this paper, we propose a new NMF method with log-norm imposed on the factor matrices to enhance the sparseness.Moreover, we propose a novel column-wisely sparse norm, named $\ell_{2,\log}$-(pseudo) norm to enhance the robustness of the proposed method.The $\ell_{2,\log}$-(pseudo) norm is invariant, continuous, and differentiable.For the $\ell_{2,\log}$ regularized shrinkage problem, we derive a closed-form solution, which can be used for other general problems.Efficient multiplicative updating rules are developed for the optimization, which theoretically guarantees the convergence of the objective value sequence.Extensive experimental results confirm the effectiveness of the proposed method, as well as the enhanced sparseness and robustness.

Citations (24)

Summary

We haven't generated a summary for this paper yet.