Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uniform Operational Consistent Query Answering (2204.10592v1)

Published 22 Apr 2022 in cs.DB

Abstract: Operational consistent query answering (CQA) is a recent framework for CQA, based on revised definitions of repairs and consistent answers, which opens up the possibility of efficient approximations with explicit error guarantees. The main idea is to iteratively apply operations (e.g., fact deletions), starting from an inconsistent database, until we reach a database that is consistent w.r.t. the given set of constraints. This gives us the flexibility of choosing the probability with which we apply an operation, which in turn allows us to calculate the probability of an operational repair, and thus, the probability with which a consistent answer is entailed. A natural way of assigning probabilities to operations is by targeting the uniform probability distribution over a reasonable space such as the set of operational repairs, the set of sequences of operations that lead to an operational repair, and the set of available operations at a certain step of the repairing process. This leads to what we generally call uniform operational CQA. The goal of this work is to perform a data complexity analysis of both exact and approximate uniform operational CQA, focusing on functional dependencies (and subclasses thereof), and conjunctive queries. The main outcome of our analysis (among other positive and negative results), is that uniform operational CQA pushes the efficiency boundaries further by ensuring the existence of efficient approximation schemes in scenarios that go beyond the simple case of primary keys, which seems to be the limit of the classical approach to CQA.

Citations (5)

Summary

We haven't generated a summary for this paper yet.