Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scale Dependencies and Self-Similar Models with Wavelet Scattering Spectra (2204.10177v2)

Published 19 Apr 2022 in physics.data-an, cond-mat.dis-nn, cs.LG, eess.SP, q-fin.MF, and stat.ML

Abstract: We introduce the wavelet scattering spectra which provide non-Gaussian models of time-series having stationary increments. A complex wavelet transform computes signal variations at each scale. Dependencies across scales are captured by the joint correlation across time and scales of wavelet coefficients and their modulus. This correlation matrix is nearly diagonalized by a second wavelet transform, which defines the scattering spectra. We show that this vector of moments characterizes a wide range of non-Gaussian properties of multi-scale processes. We prove that self-similar processes have scattering spectra which are scale invariant. This property can be tested statistically on a single realization and defines a class of wide-sense self-similar processes. We build maximum entropy models conditioned by scattering spectra coefficients, and generate new time-series with a microcanonical sampling algorithm. Applications are shown for highly non-Gaussian financial and turbulence time-series.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. B. B. Mandelbrot and J. W. Van Ness, “Fractional brownian motions, fractional noises and applications,” SIAM review, vol. 10, no. 4, pp. 422–437, 1968.
  2. B. B. Mandelbrot, “Multifractals and 1/f noise wild self-affinity in physics (1963–1976).”
  3. E. Bacry, J.-F. Muzy, and A. Arneodo, “Singularity spectrum of fractal signals from wavelet analysis: Exact results,” Journal of statistical physics, vol. 70, no. 3, pp. 635–674, 1993.
  4. J.-F. Muzy, E. Bacry, and A. Arneodo, “The multifractal formalism revisited with wavelets,” International Journal of Bifurcation and Chaos, vol. 4, no. 02, pp. 245–302, 1994.
  5. P. Abry, P. Flandrin, M. S. Taqqu, and D. Veitch, “Wavelets for the analysis, estimation, and synthesis of scaling data,” Self-Similar Network Traffic and Performance Evaluation, pp. 39–88, 2000.
  6. S. Jaffard, “Wavelet techniques in multifractal analysis,” PARIS UNIV (FRANCE), Tech. Rep., 2004.
  7. S. Jaffard, B. Lashermes, and P. Abry, “Wavelet leaders in multifractal analysis,” in Wavelet analysis and applications.   Springer, 2006, pp. 201–246.
  8. H. Wendt, S. G. Roux, S. Jaffard, and P. Abry, “Wavelet leaders and bootstrap for multifractal analysis of images,” Signal Processing, vol. 89, no. 6, pp. 1100–1114, 2009.
  9. R. Leonarduzzi, P. Abry, H. Wendt, S. Jaffard, and H. Touchette, “A generalized multifractal formalism for the estimation of nonconcave multifractal spectra,” IEEE Transactions on Signal Processing, vol. 67, no. 1, pp. 110–119, 2018.
  10. U. Frisch and G. Parisi, “Fully developed turbulence and intermittency,” Proceedings of the International Summer School on Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, p. 84–88, 1985.
  11. J. Bruna and S. Mallat, “Multiscale sparse microcanonical models,” Mathematical Statistics and Learning, vol. 1, no. 3, pp. 257–315, 2019.
  12. D. R. Brillinger, “An introduction to polyspectra,” The Annals of mathematical statistics, pp. 1351–1374, 1965.
  13. S. Mallat, S. Zhang, and G. Rochette, “Phase harmonic correlations and convolutional neural networks,” Information and Inference: A Journal of the IMA, vol. 9, no. 3, pp. 721–747, 2020.
  14. J. Bruna and S. Mallat, “Invariant scattering convolution networks,” IEEE transactions on pattern analysis and machine intelligence, vol. 35, no. 8, pp. 1872–1886, 2013.
  15. J. Portilla and E. P. Simoncelli, “A parametric texture model based on joint statistics of complex wavelet coefficients,” International journal of computer vision, vol. 40, no. 1, pp. 49–70, 2000.
  16. B. B. Mandelbrot, A. J. Fisher, and L. E. Calvet, “A multifractal model of asset returns,” 1997.
  17. P. Flandrin, “Wavelet analysis and synthesis of fractional brownian motion,” IEEE Transactions on Information Theory, vol. 38, no. 2, pp. 910–917, 1992.
  18. G. Wornell, “Wavelet-based representations for the 1/f family of fractal processes,” Proceedings of the IEEE, vol. 81, no. 10, pp. 1428–1450, 1993.
  19. E. Masry, “The wavelet transform of stochastic processes with stationary increments and its application to fractional brownian motion,” IEEE Transactions on Information Theory, vol. 39, no. 1, pp. 260–264, 1993.
  20. E. McCoy and A. Walden, “Wavelet analysis and synthesis of stationary long-memory processes,” Journal of computational and Graphical statistics, vol. 5, no. 1, pp. 26–56, 1996.
  21. G. Battle, “A block spin construction of ondelettes. part i: Lemarié functions,” Communications in Mathematical Physics, vol. 110, no. 4, pp. 601–615, 1987.
  22. P.-G. Lemarié, “Ondelettes à localisation exponentielle,” J. Math. Pures Appl., vol. 67, pp. 227–236, 1988.
  23. S. Zhang and S. Mallat, “Maximum entropy models from phase harmonic covariances,” Applied and Computational Harmonic Analysis, vol. 53, pp. 199–230, 2021.
  24. E. Bacry, J. Delour, and J. F. Muzy, “Multifractal random walk,” Phys. Rev. E, vol. 64, p. 026103, Jul 2001. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevE.64.026103
  25. S. Mallat, “Group invariant scattering,” Communications on Pure and Applied Mathematics, vol. 65, no. 10, pp. 1331–1398, 2012.
  26. J. Bruna, S. Mallat, E. Bacry, J.-F. Muzy et al., “Intermittent process analysis with scattering moments,” Annals of Statistics, vol. 43, no. 1, pp. 323–351, 2015.
  27. B. Pochart and J.-P. Bouchaud, “The skewed multifractal random walk with applications to option smiles,” Quantitative finance, vol. 2, no. 4, p. 303, 2002.
  28. G. Bekaert and G. Wu, “Asymmetric volatility and risk in equity markets,” The review of financial studies, vol. 13, no. 1, pp. 1–42, 2000.
  29. J.-P. Bouchaud, A. Matacz, and M. Potters, “Leverage effect in financial markets: The retarded volatility model,” Physical review letters, vol. 87, no. 22, p. 228701, 2001.
  30. E. Bacry and J.-F. Muzy, “Hawkes model for price and trades high-frequency dynamics,” Quantitative Finance, vol. 14, no. 7, pp. 1147–1166, 2014.
  31. E. Bacry, I. Mastromatteo, and J.-F. Muzy, “Hawkes processes in finance,” Market Microstructure and Liquidity, vol. 1, no. 01, p. 1550005, 2015.
  32. P. Blanc, J. Donier, and J.-P. Bouchaud, “Quadratic hawkes processes for financial prices,” Quantitative Finance, vol. 17, no. 2, pp. 171–188, 2017.
  33. C. Aubrun, M. Benzaquen, and J.-P. Bouchaud, “On hawkes processes with infinite mean intensity,” arXiv!, p. 2112.14161, 2021.
  34. G. Zumbach, “Time reversal invariance in finance,” Quantitative Finance, vol. 9, no. 5, pp. 505–515, 2009.
  35. E. Bacry, J. Delour, and J.-F. Muzy, “Modelling financial time series using multifractal random walks,” Physica A: statistical mechanics and its applications, vol. 299, no. 1-2, pp. 84–92, 2001.
  36. N. Mordant, J. Delour, E. Léveque, A. Arnéodo, and J.-F. Pinton, “Long time correlations in lagrangian dynamics: a key to intermittency in turbulence,” Physical review letters, vol. 89, no. 25, p. 254502, 2002.
  37. B. B. Mandelbrot, “The variation of certain speculative prices,” The Journal of Business, vol. 36, no. 4, p. 394–419, 1963.
  38. R. Chicheportiche and J.-P. Bouchaud, “The fine-structure of volatility feedback i: Multi-scale self-reflexivity,” Physica A: Statistical Mechanics and its Applications, vol. 410, pp. 174–195, 2014.
  39. J. Gatheral, T. Jaisson, and M. Rosenbaum, “Volatility is rough,” Quantitative finance, vol. 18, no. 6, pp. 933–949, 2018.
  40. A. N. Kolmogorov, “Dissipation of energy in the locally isotropic turbulence,” in Dokl. Akad. Nauk SSSR A, vol. 32, 1941, pp. 16–18.
  41. ——, “On degeneration (decay) of isotropic turbulence in an incompressible viscous liquid,” in Dokl. Akad. Nauk SSSR, vol. 31, 1 941, pp. 538–540.
  42. ——, “The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers,” Cr Acad. Sci. URSS, vol. 30, pp. 301–305, 1941.
  43. ——, “A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high reynolds number,” Journal of Fluid Mechanics, vol. 13, no. 1, p. 82–85, 1962.
  44. U. Frisch, “From global scaling, a la kolmogorov, to local multifractal scaling in fully developed turbulence,” Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, vol. 434, no. 1890, pp. 89–99, 1991.
  45. O. Chanal, B. Chabaud, B. Castaing, and B. Hébral, “Intermittency in a turbulent low temperature gaseous helium jet,” The European Physical Journal B-Condensed Matter and Complex Systems, vol. 17, no. 2, pp. 309–317, 2000.
  46. A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative model for raw audio,” arXiv preprint arXiv:1609.03499, 2016.
  47. F. Eckerli, “Generative adversarial networks in finance: an overview,” Available at SSRN 3864965, 2021.
  48. R. Leonarduzzi, G. Rochette, J.-P. Bouchaud, and S. Mallat, “Maximum-entropy scattering models for financial time series,” in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2019, pp. 5496–5500.
  49. L. Gatys, A. S. Ecker, and M. Bethge, “Texture synthesis using convolutional neural networks,” Advances in neural information processing systems, vol. 28, 2015.
  50. O. Lanford, “Time evolution of large classical systems,” In Dynamical systems, theory and applications, pp. 1–111, 1975.
Citations (11)

Summary

We haven't generated a summary for this paper yet.