Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimize_Prime@DravidianLangTech-ACL2022: Abusive Comment Detection in Tamil (2204.09675v1)

Published 19 Apr 2022 in cs.CL

Abstract: This paper tries to address the problem of abusive comment detection in low-resource indic languages. Abusive comments are statements that are offensive to a person or a group of people. These comments are targeted toward individuals belonging to specific ethnicities, genders, caste, race, sexuality, etc. Abusive Comment Detection is a significant problem, especially with the recent rise in social media users. This paper presents the approach used by our team - Optimize_Prime, in the ACL 2022 shared task "Abusive Comment Detection in Tamil." This task detects and classifies YouTube comments in Tamil and Tamil- English Codemixed format into multiple categories. We have used three methods to optimize our results: Ensemble models, Recurrent Neural Networks, and Transformers. In the Tamil data, MuRIL and XLM-RoBERTA were our best performing models with a macro-averaged f1 score of 0.43. Furthermore, for the Code-mixed data, MuRIL and M-BERT provided sub-lime results, with a macro-averaged f1 score of 0.45.

Citations (4)

Summary

We haven't generated a summary for this paper yet.