Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FenceNet: Fine-grained Footwork Recognition in Fencing (2204.09434v1)

Published 20 Apr 2022 in cs.CV

Abstract: Current data analysis for the Canadian Olympic fencing team is primarily done manually by coaches and analysts. Due to the highly repetitive, yet dynamic and subtle movements in fencing, manual data analysis can be inefficient and inaccurate. We propose FenceNet as a novel architecture to automate the classification of fine-grained footwork techniques in fencing. FenceNet takes 2D pose data as input and classifies actions using a skeleton-based action recognition approach that incorporates temporal convolutional networks to capture temporal information. We train and evaluate FenceNet on the Fencing Footwork Dataset (FFD), which contains 10 fencers performing 6 different footwork actions for 10-11 repetitions each (652 total videos). FenceNet achieves 85.4% accuracy under 10-fold cross-validation, where each fencer is left out as the test set. This accuracy is within 1% of the current state-of-the-art method, JLJA (86.3%), which selects and fuses features engineered from skeleton data, depth videos, and inertial measurement units. BiFenceNet, a variant of FenceNet that captures the "bidirectionality" of human movement through two separate networks, achieves 87.6% accuracy, outperforming JLJA. Since neither FenceNet nor BiFenceNet requires data from wearable sensors, unlike JLJA, they could be directly applied to most fencing videos, using 2D pose data as input extracted from off-the-shelf 2D human pose estimators. In comparison to JLJA, our methods are also simpler as they do not require manual feature engineering, selection, or fusion.

Citations (15)

Summary

We haven't generated a summary for this paper yet.