Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Learning of Efficient Geometry-Aware Neural Articulated Representations (2204.08839v2)

Published 19 Apr 2022 in cs.CV

Abstract: We propose an unsupervised method for 3D geometry-aware representation learning of articulated objects, in which no image-pose pairs or foreground masks are used for training. Though photorealistic images of articulated objects can be rendered with explicit pose control through existing 3D neural representations, these methods require ground truth 3D pose and foreground masks for training, which are expensive to obtain. We obviate this need by learning the representations with GAN training. The generator is trained to produce realistic images of articulated objects from random poses and latent vectors by adversarial training. To avoid a high computational cost for GAN training, we propose an efficient neural representation for articulated objects based on tri-planes and then present a GAN-based framework for its unsupervised training. Experiments demonstrate the efficiency of our method and show that GAN-based training enables the learning of controllable 3D representations without paired supervision.

Citations (64)

Summary

We haven't generated a summary for this paper yet.