Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bodyless Block Propagation: TPS Fully Scalable Blockchain with Pre-Validation (2204.08769v3)

Published 19 Apr 2022 in cs.NI and cs.DC

Abstract: Despite numerous prior attempts to boost transaction per second (TPS) of blockchain systems, many sacrifice decentralization and security. This paper proposes a bodyless block propagation (BBP) scheme for which the blockbody is not validated and transmitted during block propagation, to increase TPS without compromising security. Nodes in the blockchain network anticipate the transactions and their ordering in the next upcoming block so that these transactions can be pre-executed and pre-validated before the block is born. For a network with $N$ nodes, our theoretical analysis reveals that BBP can improve TPS scalability from $O(1/log(N))$ to $O(1)$. Ensuring consensus on the next block's transaction content is crucial. We propose a transaction selection, ordering, and synchronization algorithm to drive this consensus. To address the undetermined Coinbase address issue, we further present an algorithm for such unresolvable transactions, ensuring a consistent and TPS-efficient scheme. With BBP, most transactions require neither validation nor transmission during block propagation, liberating system from transaction-block dependencies and rendering TPS scalable. Both theoretical analysis and experiments underscore BBP's potential for full TPS scalability. Experimental results reveal a 4x reduction in block propagation time compared to Ethereum blockchain, with TPS performance being limited by node hardware rather than block propagation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” [Online]. Available: http://bitcoin.org, 2008.
  2. V. Buterin et al., “Ethereum: A next-generation smart contract and decentralized application platform,” URL https://github. com/ethereum/wiki/wiki/% 5BEnglish% 5D-White-Paper, vol. 7, 2014.
  3. G. Wood et al., “Ethereum: A secure decentralised generalised transaction ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp. 1–32, 2014.
  4. K. Qin, L. Zhou, and A. Gervais, “Quantifying blockchain extractable value: How dark is the forest?” in 2022 IEEE Symposium on Security and Privacy (SP), 2022, pp. 198–214.
  5. L. Ante, “Non-fungible token (nft) markets on the ethereum blockchain: temporal development, cointegration and interrelations,” Economics of Innovation and New Technology, vol. 32, no. 8, pp. 1216–1234, 2023.
  6. H. Duan, J. Li, S. Fan, Z. Lin, X. Wu, and W. Cai, “Metaverse for social good: A university campus prototype,” in Proceedings of the 29th ACM International Conference on Multimedia, 2021, pp. 153–161.
  7. M. Schäffer, M. Di Angelo, and G. Salzer, “Performance and scalability of private ethereum blockchains,” in Business Process Management: Blockchain and Central and Eastern Europe Forum: BPM 2019 Blockchain and CEE Forum, Vienna, Austria, September 1–6, 2019, Proceedings 17.   Springer, 2019, pp. 103–118.
  8. E. Georgiadis, “How many transactions per second can bitcoin really handle? theoretically.” Cryptology ePrint Archive, 2019.
  9. “Etherscan,” https://etherscan.io/txsPending/, 2015, accessed January, 2022.
  10. A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and S. Capkun, “On the security and performance of proof of work blockchains,” in Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, 2016, pp. 3–16.
  11. M. Corallo, “Compact block relay.bip 152,” [Online]. Available: https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki, 2016.
  12. C. Zhao, T. Wang, S. Zhang, and S. C. Liew, “Hcb: Enabling compact block in ethereum network with secondary pool and transaction prediction,” IEEE Transactions on Network Science and Engineering, vol. 11, no. 1, pp. 1077–1092, 2024.
  13. P. Tschipper, “Buip-010 xtreme thinblocks,” [Online]. Available: https://github.com/BitcoinUnlimited/BUIP/ blob/master/010.md, 2016.
  14. A. P. Ozisik, G. Andresen, B. N. Levine, D. Tapp, G. Bissias, and S. Katkuri, “Graphene: efficient interactive set reconciliation applied to blockchain propagation,” in Proceedings of the ACM Special Interest Group on Data Communication, 2019, pp. 303–317.
  15. Y. Shahsavari, K. Zhang, and C. Talhi, “A theoretical model for block propagation analysis in bitcoin network,” IEEE Transactions on Engineering Management, 2020.
  16. B. Liu, Y. Qin, and X. Chu, “Reducing forks in the blockchain via probabilistic verification,” in 2019 IEEE 35th International Conference on Data Engineering Workshops (ICDEW).   IEEE, 2019, pp. 13–18.
  17. S. Sanghavi, B. Hajek, and L. Massoulié, “Gossiping with multiple messages,” IEEE Transactions on Information Theory, vol. 53, no. 12, pp. 4640–4654, 2007.
  18. D. Shah, “Gossip algorithms,” Foundations and Trends® in Networking, vol. 3, no. 1, pp. 1–125, 2009.
  19. A. Gopalan, A. Sankararaman, A. Walid, and S. Vishwanath, “Stability and scalability of blockchain systems,” Proceedings of the ACM on Measurement and Analysis of Computing Systems, vol. 4, no. 2, pp. 1–35, 2020.
  20. J. Mundinger, R. Weber, and G. Weiss, “Optimal scheduling of peer-to-peer file dissemination,” Journal of Scheduling, vol. 11, no. 2, pp. 105–120, 2008.
  21. U. Klarman, S. Basu, A. Kuzmanovic, and E. G. Sirer, “bloxroute: A scalable trustless blockchain distribution network whitepaper,” IEEE Internet of Things Journal, 2018.
  22. C. Pinzón and C. Rocha, “Double-spend attack models with time advantange for bitcoin,” Electronic Notes in Theoretical Computer Science, vol. 329, pp. 79–103, 2016.
  23. Q. Qu, R. Xu, Y. Chen, E. Blasch, and A. Aved, “Enable fair proof-of-work (pow) consensus for blockchains in iot by miner twins (mint),” Future Internet, vol. 13, no. 11, p. 291, 2021.
  24. T. Wang, C. Zhao, Q. Yang, S. Zhang, and S. C. Liew, “Ethna: Analyzing the underlying peer-to-peer network of ethereum blockchain,” IEEE Transactions on Network Science and Engineering, vol. 8, no. 3, pp. 2131–2146, 2021.
  25. “Flashbots,” https://github.com/flashbots/pm, 2021, accessed January, 2024.
  26. C. Anderson, “Docker [software engineering],” Ieee Software, vol. 32, no. 3, pp. 102–c3, 2015.
  27. V. Buterin, “Go ethereum,” [Online]. Available: https://github.com/ethereum/go-ethereum/, 2014.
  28. A. E. Gencer, S. Basu, I. Eyal, R. Van Renesse, and E. G. Sirer, “Decentralization in bitcoin and ethereum networks,” in International Conference on Financial Cryptography and Data Security.   Springer, 2018, pp. 439–457.
  29. “Ethernodes,” https://www.ethernodes.org/, 2019, accessed January, 2022.
  30. D. Vyzovitis, Y. Napora, D. McCormick, D. Dias, and Y. Psaras, “Gossipsub: Attack-resilient message propagation in the filecoin and eth2. 0 networks,” arXiv preprint arXiv:2007.02754, 2020.
  31. J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, and Y. Liu, “A survey on the scalability of blockchain systems,” IEEE Network, vol. 33, no. 5, pp. 166–173, 2019.
  32. Q. Zhou, H. Huang, Z. Zheng, and J. Bian, “Solutions to scalability of blockchain: A survey,” IEEE Access, vol. 8, pp. 16 440–16 455, 2020.
  33. W. F. Silvano and R. Marcelino, “Iota tangle: A cryptocurrency to communicate internet-of-things data,” Future Generation Computer Systems, vol. 112, pp. 307–319, 2020.
  34. A. Churyumov, “Byteball: A decentralized system for storage and transfer of value,” URL https://byteball. org/Byteball. pdf, 2016.
  35. L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena, “A secure sharding protocol for open blockchains,” in Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, 2016, pp. 17–30.
  36. H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, and B. C. Ooi, “Towards scaling blockchain systems via sharding,” in Proceedings of the 2019 international conference on management of data, 2019, pp. 123–140.
  37. M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling blockchain via full sharding,” in Proceedings of the 2018 ACM SIGSAC conference on computer and communications security, 2018, pp. 931–948.
  38. “Danksharding,” https://ethereum.org/roadmap/danksharding, 2024, accessed January, 2024.
  39. G. Wood, “Polkadot: Vision for a heterogeneous multi-chain framework,” White Paper, vol. 21, pp. 2327–4662, 2016.
  40. V. Buterin and V. Griffith, “Casper the friendly finality gadget,” arXiv preprint arXiv:1710.09437, 2017.
  41. M. Castro and B. Liskov, “Practical byzantine fault tolerance and proactive recovery,” ACM Transactions on Computer Systems (TOCS), vol. 20, no. 4, pp. 398–461, 2002.
  42. A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger of bft protocols,” in Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, 2016, pp. 31–42.
  43. B. Guo, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Dumbo: Faster asynchronous bft protocols,” in Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, 2020, pp. 803–818.
  44. M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham, “Hotstuff: Bft consensus with linearity and responsiveness,” in Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, 2019, pp. 347–356.
  45. J. Poon and V. Buterin, “Plasma: Scalable autonomous smart contracts,” White paper, pp. 1–47, 2017.
  46. K. Floersch, “Ethereum smart contracts in l2: Optimistic rollup. 2019,” URL: https://medium. com/plasma-group/ethereum-smart-contracts-in-l2-optimistic-rollup-2c1cef2ec537.
  47. M. Moosavi, M. Salehi, D. Goldman, and J. Clark, “Fast and furious withdrawals from optimistic rollups,” in 5th Conference on Advances in Financial Technologies (AFT 2023).   Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2023.
  48. V. Buterin, “On-chain scaling to potentially 500 tx/sec through mass tx validation,” URL: https://ethresear.ch/t/on-chain-scalingto-potentially-500-tx-sec-through-mass-tx-validation/3477, 2018.
  49. T. Neudecker and H. Hartenstein, “Network layer aspects of permissionless blockchains,” IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp. 838–857, 2018.
  50. D. Ding, X. Jiang, J. Wang, H. Wang, X. Zhang, and Y. Sun, “Txilm: Lossy block compression with salted short hashing,” arXiv preprint arXiv:1906.06500, 2019.
  51. Z. Hu and Z. Xiao, “Dino: A block transmission protocol with low bandwidth consumption and propagation latency,” in IEEE INFOCOM 2022-IEEE Conference on Computer Communications.   IEEE, 2022, pp. 1319–1328.
  52. N. Chawla, H. W. Behrens, D. Tapp, D. Boscovic, and K. S. Candan, “Velocity: Scalability improvements in block propagation through rateless erasure coding,” in 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC).   IEEE, 2019, pp. 447–454.
  53. L. Zhang, T. Wang, and S. C. Liew, “Speeding up block propagation in bitcoin network: Uncoded and coded designs,” Computer Networks, vol. 206, p. 108791, 2022.
  54. “Heco chain,” https://www.hecochain.com/developer.133bd45.pdf, 2020, accessed January, 2024.
  55. T. M. Team, “The sui smart contracts platform,” [Online]. Available: https://docs.sui.io/paper/sui.pdf, 2022.
  56. E. Rohrer and F. Tschorsch, “Kadcast: A structured approach to broadcast in blockchain networks,” in Proceedings of the 1st ACM Conference on Advances in Financial Technologies, 2019, pp. 199–213.
  57. Y. Zhu, C. Hua, D. Zhong, and W. Xu, “Design of low-latency overlay protocol for blockchain delivery networks,” in 2022 IEEE Wireless Communications and Networking Conference (WCNC).   IEEE, 2022, pp. 1182–1187.
  58. H. Qiu, T. Ji, S. Zhao, X. Chen, J. Qi, H. Cui, and S. Wang, “A geography-based p2p overlay network for fast and robust blockchain systems,” IEEE Transactions on Services Computing, 2022.
  59. “Fibre: Fast internet bitcoin relay engine,” https://github.com/bitcoinfibre/bitcoinfibre, 2017, accessed September, 2022.
  60. “Falcon - a fast bitcoin backbone,” https://www.falcon-net.org, 2020, accessed January, 2024.
  61. J. Zahnentferner, “Chimeric ledgers: Translating and unifying utxo-based and account-based cryptocurrencies,” Cryptology ePrint Archive, 2018.
  62. S. Tikhomirov, “Ethereum: state of knowledge and research perspectives,” in International Symposium on Foundations and Practice of Security.   Springer, 2017, pp. 206–221.
  63. F. Vogelsteller and V. Buterin, “Token standard,” [Online].Available: https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md/, 2015.
Citations (8)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com