Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 105 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s
GPT-5 High 42 tok/s Pro
GPT-4o 104 tok/s
GPT OSS 120B 474 tok/s Pro
Kimi K2 256 tok/s Pro
2000 character limit reached

Consensus of networked double integrator systems under sensor bias (2204.08666v1)

Published 19 Apr 2022 in eess.SY, cs.MA, and cs.SY

Abstract: A novel distributed control law for consensus of networked double integrator systems with biased measurements is developed in this article. The agents measure relative positions over a time-varying, undirected graph with an unknown and constant sensor bias corrupting the measurements. An adaptive control law is derived using Lyapunov methods to estimate the individual sensor biases accurately. The proposed algorithm ensures that position consensus is achieved exponentially in addition to bias estimation. The results leverage recent advances in collective initial excitation based results in adaptive estimation. Conditions connecting bipartite graphs and collective initial excitation are also developed. The algorithms are illustrated via simulation studies on a network of double integrators with local communication and biased measurements.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube