Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Decentralized Federated Low Rank Matrix Recovery from Column-wise Linear Projections (2204.08117v6)

Published 18 Apr 2022 in cs.IT and math.IT

Abstract: This work develops a provably accurate fully-decentralized alternating projected gradient descent (GD) algorithm for recovering a low rank (LR) matrix from mutually independent projections of each of its columns, in a fast and communication-efficient fashion. To our best knowledge, this work is the first attempt to develop a provably correct decentralized algorithm (i) for any problem involving the use of an alternating projected GD algorithm; (ii) and for any problem in which the constraint set to be projected to is a non-convex set.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (59)
  1. S. Moothedath and N. Vaswani, “Fully decentralized and federated low rank compressive sensing,” 2021.
  2. ——, “Dec-AltProjGD: Fully-decentralized alternating projected gradient descent for low rank column-wise compressive sensing,” Conference on Decision and Control (CDC), 2022.
  3. ——, “Comparing decentralized gradient descent approaches and guarantees,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023, pp. 1–5.
  4. S. Nayer and N. Vaswani, “Sample-efficient low rank phase retrieval,” IEEE Trans. Info. Th., Dec. 2021.
  5. R. S. Srinivasa, K. Lee, M. Junge, and J. Romberg, “Decentralized sketching of low rank matrices,” in Neur. Info. Proc. Sys. (NeurIPS), 2019, pp. 10 101–10 110.
  6. S. Nayer and N. Vaswani, “Fast and sample-efficient federated low rank matrix recovery from column-wise linear and quadratic projections,” IEEE Trans. Info. Th., Feb. 2023.
  7. F. P. Anaraki and S. Hughes, “Memory and computation efficient pca via very sparse random projections,” in Intl. Conf. Machine Learning (ICML), 2014, pp. 1341–1349.
  8. S. Babu, S. G. Lingala, and N. Vaswani, “Fast low rank compressive sensing for accelerated dynamic MRI,” IEEE Trans. Comput. Imaging, 2023.
  9. S. S. Du, W. Hu, S. M. Kakade, J. D. Lee, and Q. Lei, “Few-shot learning via learning the representation, provably,” in Intnl. Conf. Learning Representations (ICLR), 2021.
  10. N. Tripuraneni, C. Jin, and M. Jordan, “Provable meta-learning of linear representations,” in International Conference on Machine Learning, 2021, pp. 10 434–10 443.
  11. J. Hu, X. Chen, C. Jin, L. Li, and L. Wang, “Near-optimal representation learning for linear bandits and linear rl,” in International Conference on Machine Learning, 2021, pp. 4349–4358.
  12. J. Yang, W. Hu, J. D. Lee, and S. S. Du, “Impact of representation learning in linear bandits,” arXiv:2010.06531, 2020.
  13. L. Cella, K. Lounici, G. Pacreau, and M. Pontil, “Multi-task representation learning with stochastic linear bandits,” in International Conference on Artificial Intelligence and Statistics, 2023, pp. 4822–4847.
  14. C. D’Eramo, D. Tateo, A. Bonarini, M. Restelli, and J. Peters, “Sharing knowledge in multi-task deep reinforcement learning,” arXiv:2401.09561.
  15. S. Arora, S. Du, S. Kakade, Y. Luo, and N. Saunshi, “Provable representation learning for imitation learning via bi-level optimization,” in International Conference on Machine Learning, 2020, pp. 367–376.
  16. E. J. Candes and B. Recht, “Exact matrix completion via convex optimization,” Found. of Comput. Math, no. 9, pp. 717–772, 2008.
  17. P. Netrapalli, P. Jain, and S. Sanghavi, “Low-rank matrix completion using alternating minimization,” in Annual ACM Symp. on Th. of Comp. (STOC), 2013.
  18. A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-agent optimization,” IEEE Transactions on Automatic Control, vol. 54, no. 1, pp. 48–61, 2009.
  19. S. Lee and A. Nedić, “Distributed random projection algorithm for convex optimization,” IEEE Journal of Selected Topics in Signal Processing, vol. 7, no. 2, pp. 221–229, 2013.
  20. A. Nedić, “Convergence rate of distributed averaging dynamics and optimization in networks,” Foundations and Trends® in Systems and Control, vol. 2, no. 1, pp. 1–100, 2015.
  21. I. Lobel and A. Ozdaglar, “Distributed subgradient methods for convex optimization over random networks,” IEEE Transactions on Automatic Control, vol. 56, no. 6, pp. 1291–1306, 2010.
  22. K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized gradient descent,” SIAM Journal on Optimization, vol. 26, no. 3, pp. 1835–1854, 2016.
  23. A. Reisizadeh, A. Mokhtari, H. Hassani, and R. Pedarsani, “An exact quantized decentralized gradient descent algorithm,” IEEE Transactions on Signal Processing, vol. 67, no. 19, pp. 4934–4947, 2019.
  24. W. Shi, Q. Ling, G. Wu, and W. Yin, “Extra: An exact first-order algorithm for decentralized consensus optimization,” SIAM Journal on Optimization, vol. 25, no. 2, pp. 944–966, 2015.
  25. A. Nedić, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus and optimization in multi-agent networks,” IEEE Transactions on Automatic Control, vol. 55, no. 4, pp. 922–938, 2010.
  26. F. Shahriari-Mehr, D. Bosch, and A. Panahi, “Decentralized constrained optimization: Double averaging and gradient projection,” arXiv:2106.11408, 2021.
  27. A. Rogozin and A. Gasnikov, “Projected gradient method for decentralized optimization over time-varying networks,” arXiv:1911.08527, 2019.
  28. P. Bianchi and J. Jakubowicz, “Convergence of a multi-agent projected stochastic gradient algorithm for non-convex optimization,” IEEE transactions on automatic control, vol. 58, no. 2, pp. 391–405, 2012.
  29. P. Bianchi, G. Fort, and W. Hachem, “Performance of a distributed stochastic approximation algorithm,” IEEE Transactions on Information Theory, vol. 59, no. 11, pp. 7405–7418, 2013.
  30. J. Lafond, H.-T. Wai, and E. Moulines, “D-fw: Communication efficient distributed algorithms for high-dimensional sparse optimization,” in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016, pp. 4144–4148.
  31. P. Di Lorenzo and G. Scutari, “Next: In-network nonconvex optimization,” IEEE Transactions on Signal and Information Processing over Networks, vol. 2, no. 2, pp. 120–136, 2016.
  32. T. Tatarenko and B. Touri, “Non-convex distributed optimization,” IEEE Transactions on Automatic Control, vol. 62, no. 8, pp. 3744–3757, 2017.
  33. J. Zeng and W. Yin, “On nonconvex decentralized gradient descent,” IEEE Transactions on signal processing, vol. 66, no. 11, pp. 2834–2848, 2018.
  34. H.-T. Wai, J. Lafond, A. Scaglione, and E. Moulines, “Decentralized frank–wolfe algorithm for convex and nonconvex problems,” IEEE Transactions on Automatic Control, vol. 62, no. 11, pp. 5522–5537, 2017.
  35. D. Kempe and F. McSherry, “A decentralized algorithm for spectral analysis,” Journal of Computer and System Sciences, vol. 74, no. 1, pp. 70–83, 2008.
  36. A. Gang, B. Xiang, and W. U. Bajwa, “Distributed principal subspace analysis for partitioned big data: Algorithms, analysis, and implementation,” IEEE Transactions on Signal and Information Processing over Networks, vol. 7, pp. 699–715, 2021.
  37. H. Ye and T. Zhang, “DeEPCA: Decentralized exact PCA with linear convergence rate.” J. Mach. Learn. Res., vol. 22, no. 238, pp. 1–27, 2021.
  38. S. Nayer, P. Narayanamurthy, and N. Vaswani, “Provable low rank phase retrieval,” IEEE Trans. Info. Th., March 2020.
  39. X. Li and A. Scaglione, “Convergence and applications of a gossip-based gauss-newton algorithm,” IEEE transactions on signal processing, vol. 61, no. 21, pp. 5231–5246, 2013.
  40. A. Olshevsky and J. N. Tsitsiklis, “Convergence speed in distributed consensus and averaging,” SIAM journal on control and optimization, vol. 48, no. 1, pp. 33–55, 2009.
  41. X. Yi, D. Park, Y. Chen, and C. Caramanis, “Fast algorithms for robust pca via gradient descent,” in Neur. Info. Proc. Sys. (NeurIPS), 2016.
  42. P. Jain and P. Netrapalli, “Fast exact matrix completion with finite samples,” in Conf. on Learning Theory, 2015, pp. 1007–1034.
  43. S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing markov chain on a graph,” SIAM review, vol. 46, no. 4, pp. 667–689, 2004.
  44. L. Lovász, “Random walks on graphs,” Combinatorics, Paul erdos is eighty, vol. 2, no. 1-46, p. 4, 1993.
  45. Y. Chen and E. Candes, “Solving random quadratic systems of equations is nearly as easy as solving linear systems,” in Neur. Info. Proc. Sys. (NeurIPS), 2015, pp. 739–747.
  46. M. Hardt and E. Price, “The noisy power method: A meta algorithm with applications,” Advances in neural information processing systems (NeurIPS), 2014.
  47. A. Olshevsky, “Linear time average consensus on fixed graphs and implications for decentralized optimization and multi-agent control,” arXiv:1411.4186, 2014.
  48. Y. Cherapanamjeri, K. Gupta, and P. Jain, “Nearly-optimal robust matrix completion,” ICML, 2016.
  49. S. Moothedath and N. Vaswani, “Fast, communication-efficient, and provable decentralized low rank matrix recovery,” Arxiv: 2204.08117, 2023.
  50. M. Rudelson and R. Vershynin, “Smallest singular value of a random rectangular matrix,” Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, vol. 62, no. 12, pp. 1707–1739, 2009.
  51. Q. Ling, Y. Xu, W. Yin, and Z. Wen, “Decentralized low-rank matrix completion,” in 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, pp. 2925–2928.
  52. A.-Y. Lin and Q. Ling, “Decentralized and privacy-preserving low-rank matrix completion,” Journal of the Operations Research Society of China, vol. 3, no. 2, pp. 189–205, 2015.
  53. M. Mardani, G. Mateos, and G. Giannakis, “Decentralized sparsity-regularized rank minimization: Algorithms and applications,” IEEE Trans. Sig. Proc., 2013.
  54. S. Li, Q. Li, Z. Zhu, G. Tang, and M. B. Wakin, “The global geometry of centralized and distributed low-rank matrix recovery without regularization,” IEEE Signal Processing Letters, vol. 27, pp. 1400–1404, 2020.
  55. R. Xin, U. A. Khan, and S. Kar, “A fast randomized incremental gradient method for decentralized non-convex optimization,” IEEE Transactions on Automatic Control, 2021.
  56. G. Stewart, “Perturbation bounds for the QR factorization of a matrix,” SIAM Journal on Numerical Analysis, vol. 14, no. 3, pp. 509–518, 1977.
  57. J.-g. Sun, “On perturbation bounds for the qr factorization,” Linear algebra and its applications, vol. 215, pp. 95–111, 1995.
  58. X. Yi, D. Park, Y. Chen, and C. Caramanis, “Fast algorithms for robust pca via gradient descent,” in Advances in neural information processing systems, 2016, pp. 4152–4160.
  59. Y. Chen, Y. Chi, J. Fan, and C. Ma, “Spectral methods for data science: A statistical perspective,” arXiv preprint arXiv:2012.08496, 2020.
Citations (1)

Summary

We haven't generated a summary for this paper yet.