Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Helicity-conservative Physics-informed Neural Network Model for Navier-Stokes Equations (2204.07497v3)

Published 15 Apr 2022 in physics.comp-ph, cs.NA, and math.NA

Abstract: We design the helicity-conservative physics-informed neural network model for the Navier-Stokes equation in the ideal case. The key is to provide an appropriate PDE model as loss function so that its neural network solutions produce helicity conservation. Physics-informed neural network model is based on the strong form of PDE. We compare the proposed Physics-informed neural network model and a relevant helicity-conservative finite element method. We arrive at the conclusion that the strong form PDE is better suited for conservation issues. We also present theoretical justifications for helicity conservation as well as supporting numerical calculations.

Summary

We haven't generated a summary for this paper yet.