Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Superpotentials from Singular Divisors (2204.06566v1)

Published 13 Apr 2022 in hep-th

Abstract: We study Euclidean D3-branes wrapping divisors $D$ in Calabi-Yau orientifold compactifications of type IIB string theory. Witten's counting of fermion zero modes in terms of the cohomology of the structure sheaf $\mathcal{O}D$ applies when $D$ is smooth, but we argue that effective divisors of Calabi-Yau threefolds typically have singularities along rational curves. We generalize the counting of fermion zero modes to such singular divisors, in terms of the cohomology of the structure sheaf $\mathcal{O}{\overline{D}}$ of the normalization $\overline{D}$ of $D$. We establish this by detailing compactifications in which the singularities can be unwound by passing through flop transitions, giving a physical incarnation of the normalization process. Analytically continuing the superpotential through the flops, we find that singular divisors whose normalizations are rigid can contribute to the superpotential: specifically, $h{\bullet}{+}(\mathcal{O}{\overline{D}})=(1,0,0)$ and $h{\bullet}{-}(\mathcal{O}{\overline{D}})=(0,0,0)$ give a sufficient condition for a contribution. The examples that we present feature infinitely many isomorphic geometric phases, with corresponding infinite-order monodromy groups $\Gamma$. We use the action of $\Gamma$ on effective divisors to determine the exact effective cones, which have infinitely many generators. The resulting nonperturbative superpotentials are Jacobi theta functions, whose modular symmetries suggest the existence of strong-weak coupling dualities involving inversion of divisor volumes.

Citations (9)

Summary

We haven't generated a summary for this paper yet.