Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Low Voltage Customer Phase Identification Methods Based on Smart Meter Data (2204.06372v1)

Published 13 Apr 2022 in eess.SY and cs.SY

Abstract: The increased deployment of distributed energy generation and the integration of new, large electric loads such as electric vehicles and heat pumps challenge the correct and reliable operation of low voltage distribution systems. To tackle potential problems, active management solutions are proposed in the literature, which require distribution system models that include the phase connectivity of all the consumers in the network. However, information on the phase connectivity is in practice often unavailable. In this work, several voltage and power measurement-based phase identification methods from the literature are implemented. A consistent comparison of the methods is made across different smart meter accuracy classes and smart meter penetration levels using publicly available data. Furthermore, a novel method is proposed that makes use of ensemble learning and that can combine data from different measurement campaigns. The results indicate that generally better results are obtained with voltage data compared to power data from smart meters of the same accuracy class. If power data is available too, the novel ensemble method can improve the accuracy of the phase identification obtained from voltage data alone.

Citations (19)

Summary

We haven't generated a summary for this paper yet.