Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Algebraically Converging Stochastic Gradient Descent Algorithm for Global Optimization (2204.05923v3)

Published 12 Apr 2022 in math.OC and cs.LG

Abstract: We propose a new gradient descent algorithm with added stochastic terms for finding the global optimizers of nonconvex optimization problems. A key component in the algorithm is the adaptive tuning of the randomness based on the value of the objective function. In the language of simulated annealing, the temperature is state-dependent. With this, we prove the global convergence of the algorithm with an algebraic rate both in probability and in the parameter space. This is a significant improvement over the classical rate from using a more straightforward control of the noise term. The convergence proof is based on the actual discrete setup of the algorithm, not just its continuous limit as often done in the literature. We also present several numerical examples to demonstrate the efficiency and robustness of the algorithm for reasonably complex objective functions.

Citations (6)

Summary

We haven't generated a summary for this paper yet.