Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Hierarchical Block Distance Model for Ultra Low-Dimensional Graph Representations (2204.05885v2)

Published 12 Apr 2022 in cs.SI and cs.LG

Abstract: Graph Representation Learning (GRL) has become central for characterizing structures of complex networks and performing tasks such as link prediction, node classification, network reconstruction, and community detection. Whereas numerous generative GRL models have been proposed, many approaches have prohibitive computational requirements hampering large-scale network analysis, fewer are able to explicitly account for structure emerging at multiple scales, and only a few explicitly respect important network properties such as homophily and transitivity. This paper proposes a novel scalable graph representation learning method named the Hierarchical Block Distance Model (HBDM). The HBDM imposes a multiscale block structure akin to stochastic block modeling (SBM) and accounts for homophily and transitivity by accurately approximating the latent distance model (LDM) throughout the inferred hierarchy. The HBDM naturally accommodates unipartite, directed, and bipartite networks whereas the hierarchy is designed to ensure linearithmic time and space complexity enabling the analysis of very large-scale networks. We evaluate the performance of the HBDM on massive networks consisting of millions of nodes. Importantly, we find that the proposed HBDM framework significantly outperforms recent scalable approaches in all considered downstream tasks. Surprisingly, we observe superior performance even imposing ultra-low two-dimensional embeddings facilitating accurate direct and hierarchical-aware network visualization and interpretation.

Citations (6)

Summary

We haven't generated a summary for this paper yet.