Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

When NAS Meets Trees: An Efficient Algorithm for Neural Architecture Search (2204.04918v1)

Published 11 Apr 2022 in cs.AI

Abstract: The key challenge in neural architecture search (NAS) is designing how to explore wisely in the huge search space. We propose a new NAS method called TNAS (NAS with trees), which improves search efficiency by exploring only a small number of architectures while also achieving a higher search accuracy. TNAS introduces an architecture tree and a binary operation tree, to factorize the search space and substantially reduce the exploration size. TNAS performs a modified bi-level Breadth-First Search in the proposed trees to discover a high-performance architecture. Impressively, TNAS finds the global optimal architecture on CIFAR-10 with test accuracy of 94.37\% in four GPU hours in NAS-Bench-201. The average test accuracy is 94.35\%, which outperforms the state-of-the-art. Code is available at: \url{https://github.com/guochengqian/TNAS}.

Citations (3)

Summary

We haven't generated a summary for this paper yet.